Read Option chain data from Nifty using Python
Option chain data is very crucial for Future and Options(FnO) trader analysis, many use it for positional while many use it to find day trend and it's strength as well as option strike selection for trading.
In this blog post we will try to figure out how to read options data from NSE APIs using Python.
Code:
#!/usr/bin/env python3
import requests
import pandas as pd
from datetime import datetime
from dateutil.relativedelta import relativedelta, TH
# Find next thursday to figure out weekly expiry.
def next_thu_expiry_date():
todayte = datetime.today()
next_thursday_expiry = todayte + relativedelta(weekday=TH(1))
str_next_thursday_expiry = str(next_thursday_expiry.strftime("%d")) + "-" + next_thursday_expiry.strftime(
"%b") + "-" + next_thursday_expiry.strftime("%Y")
print(str_next_thursday_expiry)
return str_next_thursday_expiry
def find_ce_pe(spot_price, ce_values, pe_values):
spot_price = round(spot_price, -2)
otm_calls = []
otm_puts = []
ce_dt = pd.DataFrame(ce_values).sort_values(['strikePrice'])
pe_dt = pd.DataFrame(pe_values).sort_values(['strikePrice'], ascending=False)
for ce_value in ce_dt['strikePrice']:
if ce_value >= spot_price:
otm_calls.append(ce_value)
if len(otm_calls) > 10:
break
for ce_value in pe_dt['strikePrice']:
if ce_value <= spot_price:
otm_puts.append(ce_value)
if len(otm_puts) > 10:
break
return otm_calls, otm_puts
def read_oi(spot_price, ce_values, pe_values, symbol):
sheet_name = str(datetime.today().strftime("%d-%m-%Y")) + symbol
strike_oi_ce_pe = find_ce_pe(float(spot_price), ce_values, pe_values)
ce_dt = pd.DataFrame(ce_values).sort_values(['strikePrice'])
pe_dt = pd.DataFrame(pe_values).sort_values(['strikePrice'], ascending=False)
drop_col = ['pchangeinOpenInterest', 'askQty', 'askPrice', 'underlyingValue', 'totalBuyQuantity',
'totalSellQuantity', 'bidQty', 'bidprice', 'change', 'pChange', 'impliedVolatility',
'totalTradedVolume']
ce_dt.drop(drop_col, inplace=True, axis=1)
pe_dt.drop(drop_col, inplace=True, axis=1)
ce_dt = ce_dt.loc[ce_dt['strikePrice'].isin(strike_oi_ce_pe[0])]
pe_dt = pe_dt.loc[pe_dt['strikePrice'].isin(strike_oi_ce_pe[1])]
# print(ce_dt[['strikePrice', 'lastPrice']])
# print(pe_dt[['strikePrice', 'changeinOpenInterest']])
print(ce_dt.head(1))
print(pe_dt.head(1))
print(str([spot_price, (ce_dt['changeinOpenInterest'].sum()),
(pe_dt['changeinOpenInterest'].sum())]))
def main():
symbols = ["BANKNIFTY", "NIFTY"]
base_url = 'https://www.nseindia.com/api/option-chain-indices?symbol='
url_oc = "https://www.nseindia.com/option-chain"
for symbol in symbols:
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, ''like Gecko) '
'Chrome/80.0.3987.149 Safari/537.36',
'accept-language': 'en,gu;q=0.9,hi;q=0.8', 'accept-encoding': 'gzip, deflate, br'}
session = requests.Session()
request = session.get(url_oc, headers=headers, timeout=5)
cookies = dict(request.cookies)
response = session.get(base_url + symbol, headers=headers, timeout=5, cookies=cookies)
print(response.status_code)
dajs = response.json()
expiry = next_thu_expiry_date()
spot_price = dajs['records']['underlyingValue']
ce_values = [data['CE'] for data in dajs['records']['data'] if "CE" in data and data['expiryDate']
== expiry]
pe_values = [data['PE'] for data in dajs['records']['data'] if "PE" in data and data['expiryDate']
== expiry]
read_oi(spot_price, ce_values, pe_values, symbol)
print(len(dajs))
if __name__ == '__main__':
main()
In case of any doubt leave a comment I will try to answer.
Note: This post is for educational purpose only.
hello sir pl explain in details how to use this sheet to understand nifty/banknifty current trend.
ReplyDeletebetter pin the details in the telegram channal
ReplyDeletePlease read the latest blogpost, I have tried to explain
DeleteBhai .. code dikh nahi rahi.. Delete kiya hein kya ?
ReplyDelete